一次函数
一次函数
一次函数
【目的要求】1、使学生初步理解一次函数与正比例函数的概念。
2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。
【教学重点、难点】一次函数以及正比例函数的解析式
【教学过程】
一、复习提问:
1、什么是函数?
2、函数有哪几种表示方法?
3、举出几个函数的例子。
二、新课讲解:
可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:
(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)
(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)
(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)
(4)x的一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的层层设问,最后给出一次函数的定义。
一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。
对这个定义,要注意:
(1)x是变量,k,b是常数;
(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)
由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。
在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
写成式子是 (一定)
需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。
其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。
三、课堂练习:
课本后练习第1题.
四、答疑(老师在下面巡视,学生提问题)
五、小结
1) 什么是一次函数?它的解析式是什么?
2) 正比例函数呢?
六、课后作业
课本后习题1、2两题
【一次函数】相关文章:
一次函数教学反思02-22
一次函数图像教学反思08-25
一次函数教学反思15篇04-01
《一次函数》复习课教学反思04-21
初二数学一次函数教案12-09
数学教案:一次函数的表达式01-21
初二数学一次函数教案 6篇12-09
初二数学一次函数教案 (6篇)12-10
一次函数与一元一次不等式教学反思04-18
八年级数学下册《一次函数》教学反思04-18