- 相关推荐
余角和补角教案
作为一位无私奉献的人民教师,可能需要进行教案编写工作,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?以下是小编整理的余角和补角教案,仅供参考,欢迎大家阅读!
余角和补角教案 篇1
一、教学目标:
⑴在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。
⑵经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。
⑶体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的自信心。
二、教学重点、难点:
余角与补角的性质
三、教学过程:
复习、引入:
⑴复习角的定义。你知道有哪些特殊的角?
⑵用量角器量一量图中每组两个角的度数,并求出它们的和。
你有什么发现?
新课:
由学生的发现,给出余角和补角的定义(文字叙述)。
并且用数学符号语言进行理解。
问题1:如何求一个角的余角和补角。
①∠1的余角:90°-∠1
②∠α的补角:180°-∠α
练习:填表(求一个角的余角、补角)
拓广:观察表格,你发现α的余角和α的补角有什么关系?
如何进行理论推导?
结论:α的补角比α的余角大90°
α一定是锐角
钝角没有余角,但一定有补角。
问题2:①如果∠1与∠2互余,∠3与∠4互余,并且∠1=∠3,那么∠2和∠4什么关系?为什么?
(学生讨论,请一人回答)
②如果∠1与∠2互补,∠3与∠4互补,并且∠1=∠3,
那么∠2和∠4什么关系?为什么?
结论:性质:①等角的余角相等。
②等角的'补角相等。
练习:看图找互余的角和互补的角,以及相等的角。
结论:直角的补角是直角。凡是直角都相等。
解决实际问题:
在长方形的台球桌面上,选择适当的角度击打白球,可以使白球经过两次反弹后将黑球直接撞入袋中。此时∠1=∠2,∠3=∠4,并且∠2+∠3=90°,∠4+∠5=90°。如果黑球与洞口的连线和台球桌面边缘的夹角∠5=40°,那么∠1应等于多少度才能保证黑球准确入袋?请说明理由。
(学生小组讨论,应用所学知识解决此问题)
小结:
⑴这节课,使我感受最深的是……
⑵这节课,我感到最困难的是……
⑶这节课,我学会了……
⑷这节课,我发现生活中……
⑸这节课,我想我将……
(学生思考作答)
作业:
目标检测P64,
书P139-6(写书上),
书P147-9,10(写本上)
余角和补角教案 篇2
[教学目标]
1、在具体情境中认识余角和补角的概念,并会运用解题;
2、经历观察、操作、探究、推理、交流等活动,发展学生的空间观念,培养学生的推理能力和有条理的表达能力;
3、体验数学知识的发生、发展过程,敢于面对数学活动中的困难,建立学好数学的信心。
[教学重点与难点]
1、教学重点:互为余角、互为补角的概念;
2、教学难点:应用方程的思想解决有关余角和补角的问题。
[教学准备]
多媒体课件、纸板、三角尺
[教学过程]
一、情境引入
1、带领同学们领略意大利的比萨斜塔的壮观景象,并思考:斜塔与地面所成的角度和它与竖直方向所成的角度相加为多少度?(课件演示)
2、(动手操作1)拿出一个直角纸板,将直角剪成两个角,
∠1和∠2,问:∠1和∠2的和为多少度呢?
∠1+∠2=90o,我们把具有这种关系的∠1、∠2称为互余,
其中∠1叫做∠2的`余角,∠2叫做∠1的余角。
请同学们根据老师的演示试着说出余角的定义。
(设计意图:通过比萨斜塔的现实情境和剪纸这一实际操作引出余角概念,既调起学生的兴趣,又直观易懂。)
二、新知探究
1、余角的定义:如果两个角的和为90o(直角),我们就称这两个角互为余角,简称互余。
2、(动手操作2)
(1)拿出和的两个角的纸板拼成一个直角,问:“这两个角互余吗?”
把其中一个角移开,“这两个角还互余吗?”
注意事项1:两角互余只与度数有关,与位置无关。
继续提问:直角三角板的和的两个角互为余角吗?老师在前面黑板上画一个的角,班长在后面黑板上画一个的角,这两个角互为余角吗?
(2)拿出一个直角纸板,将其剪成三个角,分别标上∠1、∠2、∠3,问:
“∠1、∠2、∠3是互为余角吗?为什么?”
注意事项2:互余是两角间的关系。
(设计意图:余角的两个注意事项,通过举例、现场操作,让学生说出错误观点,然后以纠错的方法得出,让学生的印象更为深刻。)
3、补角的定义:如果两个角的和为(平角),我们就称这两个角互为补角,简称互补。
4、游戏一:找朋友
环节一:老师把事先准备的标有度数的角的卡片发给一些同学,并介绍了游戏规则:当老师拿出一张卡片,说要找余角(补角)朋友时,拿到它的余角(补角)的同学请立刻起立,并说:“我是一个____度的角,我是你的余角(补角)朋友!”
环节二:将班级同学分成左右两个大组,参与的同学可以向另外一组的同学提出考验:“_____度的余(补)角是多少度?”另一组的同学要立刻回答,比一比,看一看哪个小组答得又快又正确!
(设计意图:通过轻松愉快的游戏过程拉近师生之间的距离,并让学生学会熟练地求解一个角的余角和补角。)
三、例题精讲
例1。已知:如图,点O为直线AB上一点,∠COB=,求:
(1)图中互余的角是__________与___________。
(2)图中互补的角是_______与_______;_______与________。
(3)图中相等的角是________与_________。
点评:结合几何图形让学生更深刻地理解互余和互补。
例2。若一个角的补角等于它的余角的4倍,求这个角的度数。
分析:若设这个角是,则它的补角是(),余角是(),再依据题设中的等量关系“补角=4余角”,便可列出方程求解。
解:设这个角是,则根据题意得:
解得:
答:这个角的度数是。
点评:解决这类问题的关键是找出问题中的等量关系,运用方程的观点列方程求解。
【变式】一个角的补角是它的3倍,这个角是多少度?
四、能力拓展
(小组探究)思考:小明在计算角的补角比它的余角大多少时,由于粗心大意,将看成来计算,这对计算结果有影响吗?为什么?
(提示)1、算一算:的补角比余角大______度;
的补角比余角大_______度;
所以,这对计算结果_________影响。
3、思考:如果小明把看成来计算,对计算结果有影响吗?
4、再思考:一般地,的补角比它的余角大_______度,你能证明吗?
【牛刀小试】:
1、已知一个角的余角为,则这个角的补角为___________;
2、已知一个角的补角为,则这个角的余角为__________;
3、已知一个角的余角与它的补角的和为,则这个角的余角是多少度?
(设计意图:本探究及其3道配套练习题主要目的是拓展学生思维,让学生在合作交流中完成由特殊到一般的探究和演绎推理。)
五、收获广谈
这节课我学会了……(由学生谈谈)
【余角和补角教案】相关文章:
《狐狸和乌鸦》教案11-02
《矛和盾》的教案07-17
网络和音乐教案08-26
地球的自转和公转教案06-07
数学圆形和方形教案09-09
大雨和小雨音乐教案07-02
开始和停止音乐教案06-09
《小鸟和汽车》音乐教案06-13
《雪花和雨滴》音乐教案06-08